Skip to main content

See also:

Next generation of air traffic control is coming up

NextGen will allow to fly airplanes more efficiently
NextGen will allow to fly airplanes more efficiently
AF

Big changes are coming up: The US is undertaking the largest transformation of air traffic control ever attempted. Known as the Next Generation Air Transportation System, or NextGen, it is a multi-billion-dollar technology modernization effort that will make air travel safer, more flexible and more efficient. As the system gets better, its capacity will grow and the demand for different types of air transportation – even unmanned aircraft – will increase.

For instance, NASA is one of several U.S. government agencies that play a crucial role in helping to plan, develop and implement NextGen. NASA's role is research and development of new ideas and technologies that will make NextGen a reality. We're working on software that reduces airport runway and surface congestion, new landing techniques that save fuel and time, computer models that predict more accurately the influence of weather on flight paths, and air traffic control solutions that allow more takeoffs and landings in the same amount of time.

Researcher Leighton Quon, project manager of NextGen Systems Analysis, Integration, and Evaluation at NASA's Ames Research Center, Moffett Field, Calif., answers eight questions about what NASA is doing to help improve air transportation for all of us in the future.

What will change?

NextGen stands for the Next Generation Air Transportation System. The current air transportation system includes all of the air traffic controllers, their equipment and software, the control tower facilities in which they work, the radars and the radio beacons on the ground that help pilots navigate throughout the country. Basically, it's what gets aircraft on their planned paths and what keeps them from flying too close to each other. The Federal Aviation Administration (FAA) leads the process of implementing updates to that system, with NASA and others as partners. We call the updates "NextGen."

Benefits for the aviation

The NextGen will make air travel more dependable and efficient. In this case, “efficient” means to reduce the resources with less fuel burned, less time taken or even more flights in a given time. It will provide improvements to how air traffic is managed, saving fuel and reducing noise, emissions, congestion and delays.

Effects for the passengers

The system will allow more planes in the sky, which means more air travel options. It will allow more efficient routes that will get you where you’re going faster with fewer delays. And , it will do it all with fewer emissions. If you live near an airport, NextGen will also help reduce noise near your home. The system will be less prone to major disruptions such as storms, too.

Why it's now over-due?

The air traffic management has evolved over time, but it hasn’t changed very much since the 1950s. For example, in the early 1920s the U.S. Postal Service had the mail flown across the country mostly during daylight hours. A way to fly the mail at night was needed, so they would place bonfires along the navigational routes and the planes would fly from bonfire to bonfire. The planes weren’t that fast and there weren’t as many aircraft flying, so a method of visual guidance was enough to get everyone where they needed to go. The bonfires were replaced with radio beacons in the 1930s. In the 1950s, radar was introduced. Ever since then, the air traffic management system has relied on post-World War II era technologies of radio-based navigation aids, radar and radios. Today we are using advanced versions of these same technologies.

How will the NextGen be different?

Airplanes mostly fly indirect, even zig-zag, paths over a series of ground-based radio beacons. Controllers "watch" the progress of the flights on radar and direct the aircraft individually by radio if they need to alter their paths. The efficiency of a flight route is very limited by the old radio, ground based beacons and radar technology. NextGen will use modern technologies to determine the position of planes much more precisely so they don’t need to follow the ground stations. A satellite-based positioning system using GPS called Automatic Dependent Surveillance-Broadcast, or ADS-B, will be used to accurately determine the position of an aircraft, and this accurate information will be broadcast over a network. Computers, both in the aircraft and on the ground, will help offload some of the work and information processing from humans to support choosing the most efficient paths to fly while still keeping a safe distance from other aircraft. All of these technologies working together will help make air travel more dependable and efficient.

NASA's role in the development

Focus: The primary role of NASA in the NextGen partnership is research and development of concepts and technologies. In the Airspace Systems Program at NASA, they divide this into two groups - one that develops new concepts and technologies, and the other – the area I manage – analyzes, integrates and evaluates the new ideas to get them closer to being ready to use. They're all working toward new and innovative ways to manage air traffic, primarily through creating new software tools and new ways of doing things, in the air and on the ground. According to NASA, we have years of successful work on all kinds of aspects of this, but the ground-based technologies that allow controllers in all of their various roles to be more efficient and handle more aircraft traffic is one of our big areas of focus. This includes new computer applications, computer systems, hardware and ways to use all of these together in an integrated way. So NASA develops new ideas, tries them out through simulations and field tests, and reports the results to the FAA. The FAA then uses that background to create new formal air traffic management procedures, tests those out to make sure they’re safe, certifies them and makes them operational.

Technologies NASA develops

Leighton says: "There are a bunch of things researchers are working on. We try and address the major constraints that create inefficiencies, and this generally includes all the phases of flight from your departure gate to your arrival gate, as well as other issues that might relate to weather. From the time you board your flight and are ready to leave the gate, there are already opportunities to make the operations more efficient with new concepts we are developing."