Skip to main content
  1. Life
  2. Society & Culture
  3. Social Issues

3-D printable robots could self-assemble when heated says new research from MIT

See also

New printable robots could self-assemble when heated, according to recent research. New algorithms and electronic components could enable printable robots that self-assemble when heated. The result? printable robots. And beyond? Robots that self-assemble. Printable robots — those that can be assembled from parts produced by 3-D printers — have long been a topic of research in the lab of Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT), reports a May 31, 2014 news release, "New printable robots could self-assemble when heated."

At this year's IEEE International Conference on Robotics and Automation, Rus' group and its collaborators introduce a new wrinkle on the idea: bakable robots. In two new papers, the researchers demonstrate the promise of printable robotic components that, when heated, automatically fold into prescribed three-dimensional configurations.

One paper describes a system that takes a digital specification of a 3-D shape — such as a computer-aided design, or CAD, file — and generates the 2-D patterns that would enable a piece of plastic to reproduce it through self-folding

The other paper explains how to build electrical components from self-folding laser-cut materials. The researchers present designs for resistors, inductors, and capacitors, as well as sensors and actuators — the electromechanical "muscles" that enable robots' movements.

"We have this big dream of the hardware compiler, where you can specify, 'I want a robot that will play with my cat,' or 'I want a robot that will clean the floor,' and from this high-level specification, you actually generate a working device," Rus says, according to a May 31, 2014 news release by Larry Hardesty, MIT News Office, New printable robots could self-assemble when heated. "So far, we have tackled some subproblems in the space, and one of the subproblems is this end-to-end system where you have a picture, and at the other end, you have an object that realizes that picture. And the same mathematical models and principles that we use in this pipeline we also use to create these folded electronics."

Both papers build on previous research that Rus did in collaboration with Erik Demaine, another professor of computer science and engineering at MIT. This work explored how origami could be adapted to create reconfigurable robots.

All the angles

The key difference in the new work, explains Shuhei Miyashita, a postdoc in Rus' lab and one of her co-authors on both papers, is a technique for precisely controlling the angles at which a heated sheet folds. Miyashita sandwiches a sheet of polyvinyl chloride (PVC) between two films of a rigid polyester riddled with slits of different widths. When heated, the PVC contracts, and the slits close. Where edges of the polyester film press up against each other, they deform the PVC.

Imagine, for instance, a slit in the top polyester film and another parallel to it in the bottom film. But suppose, too, that the slit in the top film is narrower than that on the bottom. As the PVC contracts, the edges of the top slit will press against each other, but there will still be a gap between the edges of the bottom slit. The entire sheet will then bend downward until the bottom edges meet as well. The final angle is a function of the difference in the widths of the top and bottom slits. But producing the pattern of slits is not as simple as just overlaying them on an origami crease pattern and adjusting the widths accordingly, Rus says, according to the news release.

"You're doing this really complicated global control that moves every edge in the system at the same time," she says, according to the news release. "You want to design those edges in such a way that the result of composing all these motions, which actually interfere with each other, leads to the correct geometric structure."

ByoungKwon An, another of Rus' students, is lead author on the paper describing the system for interpreting 3-D images. He's joined by Rus, Miyashita, Demaine, and five other researchers both at MIT and in the lab of professor Robert Wood at Harvard University.

Researchers create foldable electronic components

Miyashita is lead author on the other paper, whose coauthors include, in addition to Rus, researchers at the University of Zurich and the University of Tokyo. In that paper, the researchers describe using a polyester that's coated with aluminum to create foldable electronic components. Miyashita designed those components by hand, since it was necessary to prescribe not just their geometric properties but also their electrical properties.

The sensor Miyashita designed looks kind of like a small accordion. Each of the accordion folds contains a separate resistor, and when the folds are compressed, the total resistance changes proportionally, with a measurable effect on a current passing through the sensor.

The actuator — which would enable a robot to move — is a foldable coil, which would need to be augmented with a pair of iron cylinders that could be magnetized by an electrical current. Aluminum isn't a good enough conductor to yield an actuator that exerts much force, but a copper-coated polyester should do the trick. For further information, check out the archive, "Soft robotic fish moves like the real thing." Or see the archive, "Surprisingly simple scheme for self-assembling robots." You also may wish to check out, "New printable robots could self-assemble when heated" and "Scientists are Getting Closer to 3D-Printed, Self-Assembling Robots."

Want more robot facts? Check out "Roombots Self-Assemble into Furniture" and "Roombots: Scientists develop robots that can form different types of furniture." You never know what's next when it comes to robots that self assemble. Look for more inventions as various sensors evolve.

Advertisement

Life

  • Tom Petty
    Seven overlooked videos that prove the genius of Tom Petty and the Heartbreakers
    Today's Buzz
  • Gaylord Pickens
    Discover Gaylord-Pickens Oklahoma Heritage Museum dollar days
    Camera
    6 Photos
  • Yoga poses
    Learn how to strengthen your core muscles with these yoga poses
    Camera
    5 Photos
  • Baby boomer STD rates
    Sexually transmitted diseases: Baby boomers booming STD rates
    Camera
    7 Photos
  • Open relationships
    Are you thinking about exercising your option to be in an open relationship?
    Camera
    5 Photos
  • Medical symptoms
    See which symptoms should cause you to seek a doctor’s attention right away
    Camera
    6 Photos

Related Videos:

  • Batman's 75th birthday was celebrated at San Diego Comic-Con 2014
    <iframe width="560" height="315" src="//www.youtube.com/embed/IFwOS2R9o_8?VQ=HD720&amp;allowfullscreen=true&amp;autoplay=1"></iframe>
  • Blur Studios officially releases Deadpool 'test footage'
    <iframe width="560" height="315" src="//www.youtube.com/embed/1-L2hUkeqJ0?VQ=HD720&amp;allowfullscreen=true&amp;autoplay=1"></iframe>
  • Penelope Mitchell
    <div class="video-info" data-id="518342857" data-param-name="playList" data-provider="5min" data-url="http://pshared.5min.com/Scripts/PlayerSeed.js?sid=1304&width=480&height=401&playList=518342857&autoStart=true"></div>